
SOLUTION SEPTEMBER 2015
M. MATH LINEAR ALGEBRA MID-TERM EXAM SEMESTER I

1. [15 points] For the matrix A =

(
2 1
1 2

)
find a matrix P such that PAP−1 is diagonal and give a

formula for A30.

Solution: A =

(
2 1
1 2

)
, then the characteristic polynomial of A is P (A) = (x− 2)2 − 1 = x2 − 4x− 3 =

(x− 3)(x− 1), implies eigenvalues of A are 3 and 1.
Let (a, b) is an eigenvector corresponding to the eigenvalues 3. Then

A =

(
2 1
1 2

)(
a
b

)
= 3

(
a
b

)
=⇒ 2a+ b = 3a

a+ 2b = 3b
=⇒ a = b.

Thus (1, 1) is an eigenvector corresponding to eigenvalue 3. Similarly if (c, d) is an eigenvector corre-
sponding to the eigenvalue 1. Then

A =

(
2 1
1 2

)(
c
d

)
= 1

(
c
d

)
=⇒ 2c+ d = c

c+ 2d = d
=⇒ c = −d.

Thus (−1, 1) is an eigenvector corresponding to eigenvalue 1.

Now consider the matrix P =

(
1 −1
1 1

)
. Then P−1 = 1

2

(
1 1
−1 1

)
. Also

A =

(
2 1
1 2

)
=

1

2

(
1 1
−1 1

)(
3 0
0 1

)(
1 −1
1 1

)
= P−1DP =⇒ D = PAP−1,

where D =

(
3 0
0 1

)
is a diagonal matrix.

Since A = P−1DP , then A30 = (P−1DP ) · · · (P−1DP )︸ ︷︷ ︸
30 times

= P−1D30P .

2. [15 points] Let F be a field and n > 0 an integer. Give an example of two n× n matrices A,B that
are not similar, but whose characteristic polynomials are equal.

Solution: Assume that F = C and n = 2. Let A =

(
0 1
0 0

)
and B =

(
0 0
0 0

)
.

Then, A and B both have same characteristic polynomial x2. But they are not similar, as rank(A) =

rank

(
0 1
0 0

)
= 1 6= 0 = rank(B) = rank

(
0 0
0 0

)
.

3. [15 points] Let F be a field. Given two linearly independent collections of vectors v1, · · · , vr ∈ Fn

and w1, · · · , wr ∈ Fn, show that there exists an invertible n× n matrix A such that Avi = wi, for i ≤ r.

Solution: Since {v1, · · · , vr} ⊂ Fn and {w1, · · · , wr} ⊂ Fn are linearly independent set of vectors, they
can be extend to ordered bases for Fn.
Let B = {v1, · · · , vr, vr+1, · · · , vn} and B′ = {w1, · · · , wr, wr+1, · · · , wn} are bases for Fn. Consider a map

T : Fn → Fn such that T
(∑n

i=1 aivi

)
=
∑n

i=1 aiwi, for all scalar {a1, · · · , an} ⊂ F . Then T is linear as

T (αv+ βw) = T
(
α
∑n

i=1 aivi + β
∑n

i=1 bivi

)
= T

(∑n
i=1(αai + βbi)vi

)
=
∑n

i=1(αai + βbi)wi = αT (v) +

1



βT (w). Also T is bijective as T (v) = T
(∑n

i=1 aivi

)
= 0 =⇒

∑n
i=1 aiwi = 0 =⇒ ai = 0 in F, ∀ i ∈

{1, · · · , n} =⇒ v = 0 =⇒ nullity(T ) = 0 =⇒ rank(T ) = dim(Fn)− nullity(T ) = n− 0 = n.
Now let A = [T ]BB′ be the matrix of T relative to the ordered bases B,B′. Then A is the n× n invertible
matrix such that Avi = wi, for i ≤ r.

4. [20 points] Let A be an m× n matrix and let X be an invertible m×m matrix. Set A′ = XA.
(i) Show that the columns Ci1 , · · · , Cir of A are linearly independent iff the corresponding columns
C ′i1 , · · · , C

′
ir

of A′ are so. Likewise, show that Ci1 , · · · , Cir span the the column space of A iff the
corresponding ones of A′ have the same property.
(ii) Deduce that if the pivot entries in (reduced) row echelon form of A are in columns indexed by
j1, · · · , jr, then the corresponding columns Cj1 , · · · , Cjr of A form a basis of the column space of A.

Solution: Since A′ = XA, where X is m×m invertible matrix, then C ′ij = XCij ,∀ j ∈ {1, · · · , r} =⇒
Cij = X−1C ′ij ,∀ j ∈ {1, · · · , r}.

(i) Let Cj1 , · · · , Cjr are linearly independent.

Thus, 0 =
∑r

j=1 aijC
′
ij

=
∑r

j=1 aijXCij = X
(∑r

j=1 aijCij

)
=⇒

∑r
j=1 aijCij = X−10 = 0 =⇒ aij =

0, ∀j ∈ {1, · · · , r}, as Ci1 , · · · , Cir are linearly independent, implies C ′i1 , · · · , C
′
ir

are linearly independent.
Conversely let C ′i1 , · · · , C

′
ir

are linearly independent.

Thus, 0 =
∑r

j=1 bijCij =
∑r

j=1 bijX
−1C ′ij = X−1

(∑r
j=1 bijC

′
ij

)
=⇒

∑r
j=1 bijC

′
ij

= X0 = 0 =⇒
bij = 0, ∀j ∈ {1, · · · , r}, as C ′i1 , · · · , C

′
ir

are linearly independent, implies Ci1 , · · · , Cir are linearly
independent.
Now let C(A) and C(A′) be the corresponding column space of A and A′.
Let C(A) = span{Ci1 , · · · , Cir}. Then, v ∈ C(A′) =⇒ X−1v ∈ C(A) =⇒ X−1v =

∑r
j=1 aijCij =∑r

j=1 aijX
−1C ′ij = X−1

(∑r
j=1 aijC

′
ij

)
=⇒ v =

∑r
j=1 aijC

′
ij

. Thus, {C ′i1 , · · · , C
′
ir
} spans C(A′).

Conversely, let C(A′) = span{C ′i1 , · · · , C
′
ir
}. Therefore, v ∈ C(A′) =⇒ Xv ∈ C(A) =⇒ Xv =∑r

j=1 aijC
′
ij

=
∑r

j=1 aijXCij = X
(∑r

j=1 aijCij

)
=⇒ v =

∑r
j=1 aijCij . Thus, {Ci1 , · · · , Cir} spans

C(A).

(ii) Let A′ be the (reduced) row echelon form of A. Then A′ = (Ek · · ·E1)A = PA, where Ej , j ∈
{1, · · · , k} are m × m elementary matrices. Since Ej , j ∈ {1, · · · , k} are invertible, P = Ek · · ·E1 is
invertible. Thus if the pivot entries in A′ are in columns indexed by j1, · · · , jr, then {C ′j1 , · · · , C

′
jr
} are

linearly independent and spans C(A′). Therefore using previous result in (i) we get {Cj1 , · · · , Cjr} form
a basis of C(A).

5. [15 points] Show that the equation AB − BA = I has no solution in n × n matrices A,B over R.
Show that over the finite field F2 = Z/2Z, there is a solution for A,B for n = 2.

Solution: Suppose there exist n× n matrices A,B over R such that AB −BA = I.
Then trace(AB −BA) = trace(I) =⇒ trace(AB)− trace(BA) = trace(I) =⇒ 0 = n (as trace(AB) =
trace(BA)), a contradiction. Hence, the equation AB −BA = I has no solution in n× n matrices A,B
over R.

Let A =

(
0 1
0 0

)
and B =

(
0 1
1 0

)
over the field F2. Then AB =

(
1 0
0 0

)
and BA =

(
0 0
0 1

)
. Thus
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AB − BA =

(
1 0
0 −1

)
=

(
1 0
0 1

)
= I, as −1 = 1 in F2. Thus AB − BA = I has a solution over the

finite field F2 for n = 2.

6. [20 points] Let v1, · · · , vr be mutually orthogonal (nonzero) vectors in Rn.

(i) If W is the subspace
{
w ∈ Rn|vi · w = 0 ∀i

}
and V = span(v1, · · · , vr), then show that dimension of

W is n− r and that V
⊕
W = Rn.

(ii) Show that any collection of mutually orthogonal vectors in Rn is a part of a basis consisting of
mutually orthogonal vectors.

Solution: (i) Since v1, · · · , vr are mutually nonzero orthogonal vectors in Rn,
∑r

i=1 aivi = 0 =⇒(∑r
i=1 aivi

)
· vi = 0,∀i ∈ {1, · · · , r} =⇒ aivi · vi = 0 =⇒ ai = 0,∀i ∈ {1, · · · , r}, as vi · vi 6=

0. Thus, v1, · · · , vr are linearly independent. So they can be extends to a basis for Rn, say B =
{v1, · · · , vr, vr+1, · · · , vn} is the basis for Rn. Then vi · vi 6= 0,∀i ∈ {1, · · · , n}. Now using Gram-Schmidt

orthogonalization process (by taking w1 = v1 and wi = vi −
∑i−1

k=1
vk·wk

wk·wk
wk,∀i ∈ {2, · · · , n}) B can

be transformed into a orthogonal basis B′ = {w1, · · · , wn} for Rn. Then wj = vj ,∀j ∈ {1, · · · , r};
wi · wj = 0,∀i 6= j and Rn = V

⊕
W ′, where W ′ is the subspace spanned by {wr+1, · · · , wn}.

Now let w =
∑n

i=1 aiwi ∈ W then for any v ∈ V v · w = 0 =⇒ vj .
∑n

i=1 aiwi = 0,∀j ∈ {1, · · · , r} =⇒
aj = 0,∀j ∈ {1, · · · , r} =⇒ w =

∑n
i=r+1 aiwi ∈ W ′ =⇒ W ⊂ W ′. Also since for any w′ ∈ W ′ =⇒

v · w′ = 0 =⇒ W ′ ⊂ W . Thus W = W ′, implies Rn = V
⊕
W where dim(W ) = dim(W ′) =

dim(Rn)− dim(V ) = n− r.

(ii) Let v1, · · · , vr are mutually nonzero orthogonal vectors in Rn, then they are linearly independent, so
r ≤ dim(Rn) = n. If r = n then {v1, · · · , vr} is the orthogonal basis. If not then by using same procedure
in (i) i.e, extending it to a basis and then using Gram-Schmidt orthogonalization procedure we can get
a orthogonal basis {v1, · · · , vr, wr+1, · · · , wn} for Rn.
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